

Methoden des Pricing

Robert Fina, M.A.
Fachbereich Consumer Science
Research Center of Sensory Science and Consumer Behavior

Wer bin ich und warum bin ich hier?

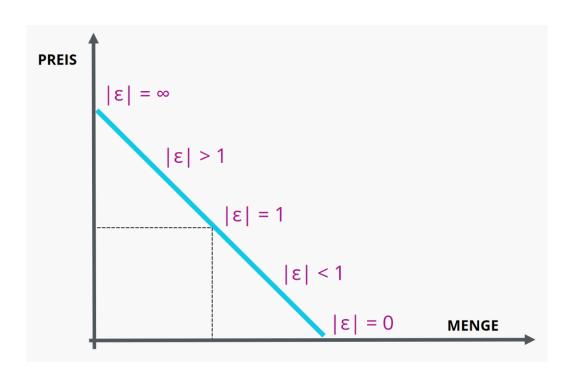
Robert Fina, BA MA
Fachbereich Consumer Science
Research Center of Sensory Science and Consumer Behavior

Was erwartet Sie?

Analysemethoden

- Preiselastizität der Nachfrage (PED)
- Price Sensitivity (Van Westendorp)
- Predictive Price Testing
- Conjoint Analyse
- Implicit-association test
- CATAP-Analyse
- (künstliche) Neuronale Netzwerke

Projekthintergrund


Preiselastizität von High- und Lowincome Gruppen am Beispiel von Ananas

Experiment:

- Untersuchung in 2 Supermärkten: ein Supermarkt in einem <u>einkommensstarken Viertel</u>, ein Supermarkt in einem einkommensschwachen Viertel
- AV: Absatz von Ananas
- Experimenteller Faktor: wöchentlicher Preisanstieg von 10 Cent/Stück (\$2,49 \$3,99)
- Feldphase: 16 Wochen

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Schema

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Datenaufbereitung

Preis	Einheiten	Gruppen
2,49	110	LI
2,59	108	LI
2,69	103	LI
2,79	101	LI
2,89	95	LI
2,99	91	LI
3,09	90	LI
3,19	86	LI
3,29	80	LI
3,39	75	LI
3,49	71	LI
3,59	66	LI
3,69	64	LI
3,79	59	LI
3,89	55	LI
3,99	54	LI
2,49	220	HI
2,59	219	HI
2,69	215	HI
2,79	212	HI
2,89	208	HI
2,99	207	HI
3,09	205	HI
3,19	205	HI
3,29	204	HI
3,39	202	HI
3,49	198	HI
3,59	197	HI
3,69	194	HI
3,79	194	HI
3,89	193	HI
3,99	193	HI

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Ergebnisse

Deskriptive Statistiken (Daten / Unterstichprobe):

Variable	Beobachtungen	Beo. mit fehlender I Daten	Beo. ohne fehlender Daten	Minimum	Maximum	Mittelwert	Standardabweichung
Preis Gruppen-Hl	16	0	16	2,490	3,990	3,240	0,476
Preis Gruppen-Ll	16	0	16	2,490	3,990	3,240	0,476
Einheiten Gruppen-Hl	16	0	16	193,000	220,000	204,125	9,032
Einheiten Gruppen-Ll	16	0	16	54,000	110,000	81 <i>,</i> 750	18,951

Ergebnisse

Resultate für die Gruppe HI:

Preis / Einheiten / Einnahmen:

Resultate für die Gruppe LI:

Preis / Einheiten / Einnahmen:

Preis	Einheiten	Einnahmen	Veränderung in %
2,49	220	547,8	0,00
2,59	219	567,21	3,54
2,69	215	578,35	5,58
2,79	212	591,48	7,97
2,89	208	601,12	9,73
2,99	207	618,93	12,98
3,09	205	633,45	15,64
3,19	205	653,95	19,38
3,29	204	671,16	22,52
3,39	202	684,78	25,01
3,49	198	691,02	26,14
3,59	197	707,23	29,10
3,69	194	715,86	30,68
3,79	194	735,26	34,22
3,89	193	750,77	37,05
3,99	193	770,07	40,58

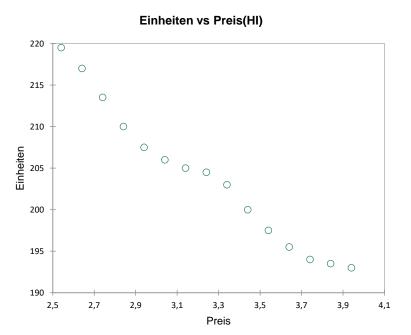
Preis	Einheiten	Einnahmen	Veränderung in %
2,49	110	273,9	0,00
2,59	108	279,72	2,12
2,69	103	277,07	1,16
2,79	101	281,79	2,88
2,89	95	274,55	0,24
2,99	91	272,09	-0,66
3,09	90	278,1	1,53
3,19	86	274,34	0,16
3,29	80	263,2	-3,91
3,39	75	254,25	<i>-7,</i> 1 <i>7</i>
3,49	71	247,79	-9,53
3,59	66	236,94	-13,49
3,69	64	236,16	-13 , 78
3,79	59	223,61	-18,36
3,89	55	213,95	-21,89
3,99	54	215,46	-21,34

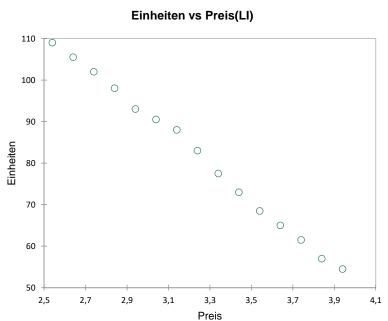
Ergebnisse

Resultate für die Gruppe HI:

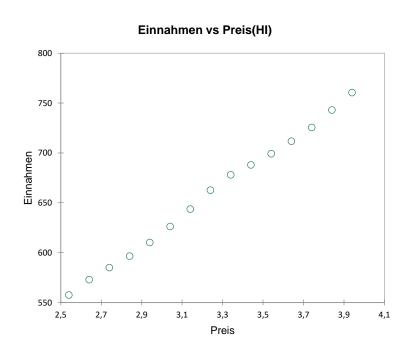
Bogenelastizität:

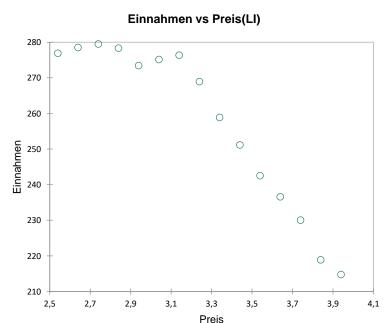
Resultate	für	die	Gruppe	LI:
-----------	-----	-----	--------	-----

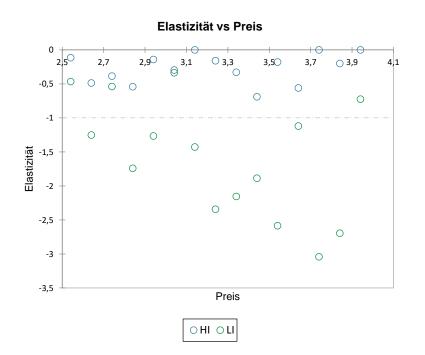

Bogenelastizität:

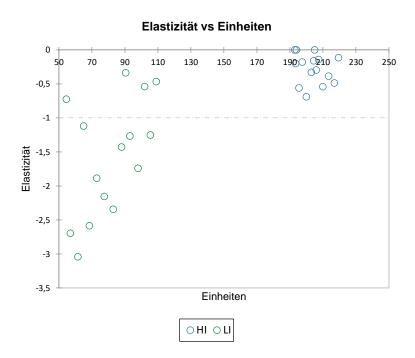

Preis	Einheiten	Einnahmen	Bogenelastizität
2,54	219,5	557,53	-0,116
2,64	21 <i>7</i>	572,88	-0,487
2,74	213,5	584,99	-0,385
2,84	210	596,4	-0,541
2,94	207,5	610,05	-0,142
3,04	206	626,24	-0,295
3,14	205	643,7	0,000
3,24	204,5	662,58	-0,158
3,34	203	678,02	-0,329
3,44	200	688	-0,688
3,54	197 , 5	699,15	-0,179
3,64	195 , 5	711,62	-0,559
3,74	194	725,56	0,000
3,84	193,5	743,04	-0,198
3,94	193	760,42	0,000

Preis	Einheiten	Einnahmen	Bogenelastizität
2,54	109	276,86	-0,466
2,64	105,5	278,52	-1,251
2,74	102	279,48	-0,537
2,84	98	278,32	-1,739
2,94	93	273,42	-1,265
3,04	90,5	275,12	-0,336
3,14	88	276,32	-1,427
3,24	83	268,92	-2,342
3,34	<i>77,</i> 5	258,85	-2,155
3,44	73	251,12	-1,885
3,54	68,5	242,49	-2,584
3,64	65	236,6	-1,120
3,74	61,5	230,01	-3,041
3,84	57	218,88	-2,695
3,94	54,5	214,73	-0,723




H WIENER NEUSTADT





FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Validierung der Gruppenunterschiede

Preis	Einheiten	Einnahmen	Bogenelastizität	Gruppen
2,54	219,5	557,53	-0,116	HI
2,64	217	572,88	-0,487	н
2,74		584,99	-0,385	н
2,84	210	596,4	-0,541	HI
2,94	207,5	610,05	-0,142	HI
3,04	206	626,24	-0,295	HI
3,14	205	643,7	0,000	HI
3,24	204,5	662,58	-0,158	HI
3,34	203	678,02	-0,329	HI
3,44	200	688	-0,688	HI
3,54	197,5	699,15	-0,179	HI
3,64	195,5	711,62	-0,559	HI
3,74	194	725,56	0,000	HI
3,84	193,5	743,04	-0,198	HI
3,94	193	760,42	0,000	HI
2,54	109	276,86	-0,466	LI
2,64	105,5	278,52	-1,251	LI
2,74	102	279,48	-0,537	LI
2,84	98	278,32	-1,739	LI
2,94	93	273,42	-1,265	LI
3,04	90,5	275,12	-0,336	LI
3,14	88	276,32	-1,427	LI
3,24	83	268,92	-2,342	LI
3,34	77,5	258,85	-2,155	LI
3,44	73	251,12	-1,885	LI
3,54	68,5	242,49	-2,584	LI
3,64	65	236,6	-1,120	LI
3,74	61,5	230,01	-3,041	LI
3,84	57	218,88	-2,695	LI
3,94	54,5	214,73	-0,723	LI

t-Test für zwei unabhängige Stichproben / Zweiseitiger Test:

95% Konfidenzintervall bzgl. der Differenz der Mittelwerte:

[0,810;1,788]

 Differenz
 1,299

 t (Beobachteter Wert)
 5,639

 |t| (Kritischer Wert)
 2,122

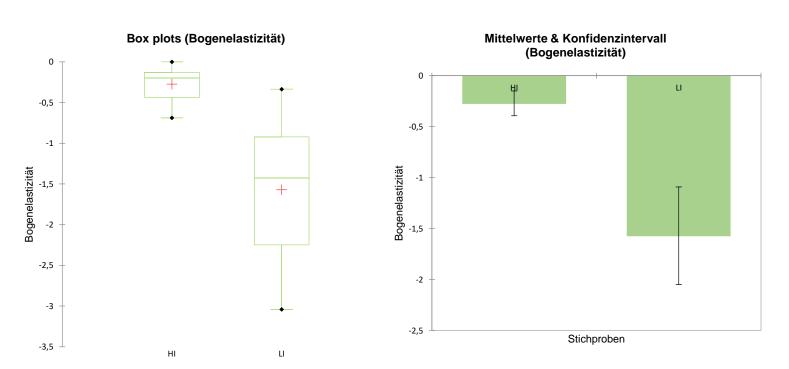
 FG
 15,813

 p-Wert (Zweiseitig)
 <0,0001</td>

 alpha
 0,050

Die Anzahl der Freiheitsgrade ist mittels der Welch-Satterthwaite-Formel angenähert

Testinterpretation:


HO: Die Differenz zwischen den Mittelwerten ist gleich O.

Ha: Die Differenz zwischen den Mittelwerten ist verschieden von 0.

Da der berechnete p-Wert kleiner als das Signifikanz-Niveau alpha=0,05 ist, muss die Null-Hypothese H0 zurückgewiesen werden und die alternative Hypothese Ha bewährt sich.

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Validierung der Gruppenunterschiede

Kritische Betrachtung

Vorteile:

- Praktische Anwendbarkeit (einfach zu verstehen und anzuwenden)
- Quantitative Messung (Preisstrategien mit konkreten Zahlen planen)
- Aussagekräftige Ergebnisse (Einfluss von Preisänderungen auf die Nachfrage kann erhoben werden)

Nachteile:

- Komplexität der Märkte (andere Einflüsse werden übersehen)
- Datenmangel (bei Produkteinführungen keine Referenz)
- Reaktionszeit (Dauer der Erhebung; ist nicht prognostisch)
- Varianz (markt- und zielgruppenspezifisch)

Projekthintergrund

Optimaler Preis für Standard-Laptop

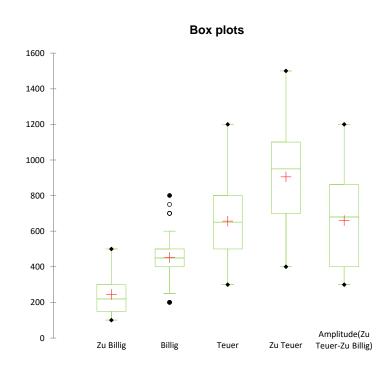
- n = 40
- Fragebogen: 4 Fragen
 - Zu welchem Preis wäre ein Standard-Laptop zu teuer, sodass du ihn auf keinen Fall kaufen würdest?
 - Zu welchem Preis würdest du den Standard-Laptop zwar als <u>teuer</u> bezeichnen, würdest ihn aber noch trotzdem kaufen?
 - Zu welchem Preis wäre der Standard-Laptop günstig, sodass du ihn als ein gutes Angebot siehst?
 - Zu welchem Preis wäre der Standard-Laptop zu günstig, sodass du die Qualität anzweifelst und ihn nicht kaufst?

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Datenaufbereitung

Zu Billig	Billig	Teuer	Zu Teuer
300	500	800	1200
200	400	700	1000
500	800	1000	1200
200	400	500	600
300	700	800	1000
300	500	1000	1500
300	500	800	1200
200	600	800	1000
100	250	500	1000
400	750	1200	1500
200	500	700	1000
240	400	650	900
100	400	900	1300
100	200	400	700
300	700	950	1200
300	600	750	1100
150	250	400	500
250	450	650	900
200	400	800	1000
150	400	800	1000
300	400	500	600
400	500	600	700
400	500	600	700
400	500	600	1000
400	500	700	800
200	300	400	700
100	200	300	400
200	300	400	500
100	500	600	900
300	400	500	1000
500	600	700	800
100	500	600	700
300	400	500	600
100	500	600	1200
100	200	400	500
200	300	400	600
300	700	900	1200
150	250	400	500
250	450	650	900
200	400	800	1100

Price Sensitivity Meter

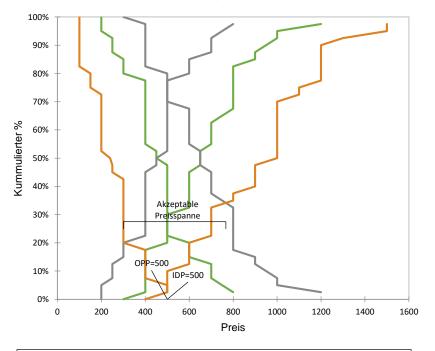

Ergebnisse

Deskriptive Statistiken:

Variable	Beobachtungen	Beo. mit fehlender Daten	Beo. ohne fehlender Daten	Minimum	Maximum	Mittelwert	Standardabweichung
Zu Billig	40	() 40	100,000	500,000	244,750	112,546
Billig	40	(40	200,000	800,000	452,500	151,467
Teuer	40	(40	300,000	1200,000	656,250	204,183
Zu Teuer Amplitude(Zu	40	() 40	400,000	1500,000	905,000	280,064
Teuer-Zu Billig)	40	() 40	300,000	1200,000	660,250	271,789

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Price Sensitivity Meter



Ergebnisse

Statistiken:

	Preis	%
Indifference price point (IDP)	500,000	0,000
Optimal price point (OPP)	500,000	0,000

Price Sensitivity Meter (n=40)

-Zu billig / Zu teuer

Billig / Teuer —— Nicht billig / Nicht teuer —

Akzeptable Preisspanne: [300,000;766,667]

Price Sensitivity Meter

Optimale Preise für Volumen und Umsatz (Newton Erweiterung)

Fragebogen: 2 Ergänzungsfragen (angelehnt an Gabor-Granger)

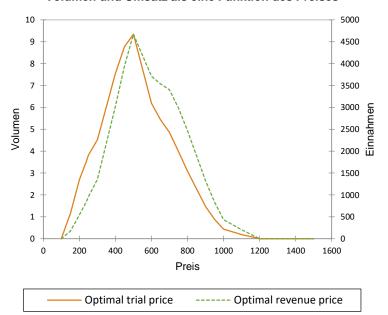
- Wie hoch ist die Wahrscheinlichkeit, dass du den Laptop zu dem Preis von [teuer] kaufst?
- Wie hoch ist die Wahrscheinlichkeit, dass du den Laptop zu dem Preis von [billig] kaufst?

Skala: 1 (sehr unwahrscheinlich) bis 5 (sehr wahrscheinlich)

Schätzung der "realen" Wahrscheinlichkeit

Ref	Wahrscheinlichkeit
1 (sehr unwahrscheinlich)	0
2	0,1
3	0,3
4	0,5
5 (sehr wahrscheinlich)	0,7

Price Sensitivity Meter (Newton)



Optimale Preise für Volumen und Umsatz - Ergebnisse

Optimale Preise für Volumen und Umsatz:

	Preis	Wahrscheinlichkeit	Volumen	Einnahmen
Optimal trial price Optimal	500,000	0,234	9,343	4671,429
revenue price	500,000	0,234	9,343	4671,429

Volumen und Umsatz als eine Funktion des Preises

Price Sensitivity Meter

Kritische Betrachtung

Vorteile:

- Einfach und schnell durchzuführen
- Kostengünstige Methode
- Berücksichtigt verschiedene Preisdimensionen
- Berücksichtigt Interdependenzen zwischen Preisen
- Mit Newton Erweiterung Umsatz- und Absatzschätzung möglich

Nachteile

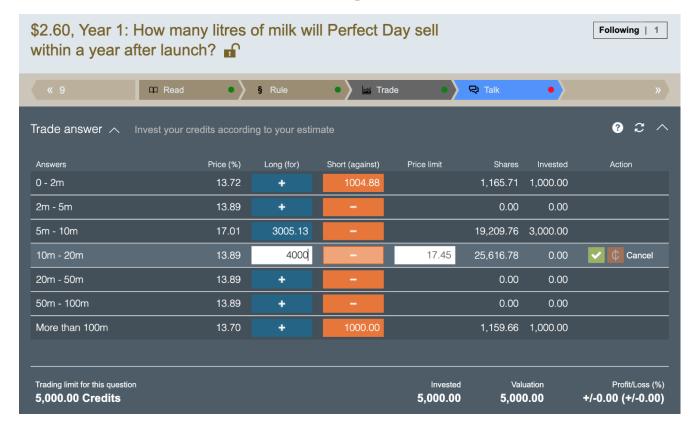
- Ergebnisse hängen stark von der Auswahl der Stichprobe ab
- Konsument*innen haben kaum Wissen über Marktpreise
- Mangel an statistischer Validierung
- Potenzielle Verzerrungen: Art der Fragestellung, die Reihenfolge der gestellten Fragen

Goal: Find The Most Profitable Price

OBJECTIVE

For a **new vegan product** in the non-dairy milk category, distributed in supermarkets. Typical questions:

- What will be the sales volume or share at three price points?
- What is the optimal price, given marginal cost?
- Why? **Qualitative reasons** for price acceptance (brand, pack ...)
- Will promotional pricing help?


STUDY DESIGN

A battery of 8 predictive questions generates quant & qual data:

- Comparative action standard predictions (LURE test pattern)
- Subcategory growth forecast, as a total of all competing brands
- Benchmark competitor's volume forecast calibrated to market data
- Monadic volume forecasts for our product, for three price points

Betcha! (Talk is Cheap)

Prediction markets ask for "skin in the game"

People are really bad at telling their "own" unbiased willingness to pay.

They low-ball, like in a **negotiation**.

However, they are good at predicting future market shifts based on how "the others" will react.

Incentives

For being right not just for clicking through

Aggregation Mechanism & Crowd IQ

?rediki

Participants have four tasks: (1) Read (2) Trade (3) Observe (4) Talk

Stimulus Material

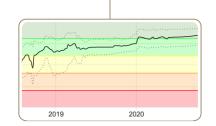
Participants review stimulus material about scenarios

Price Trend

Trading activity drives price changes and accurate predictions earn credits

Step 1

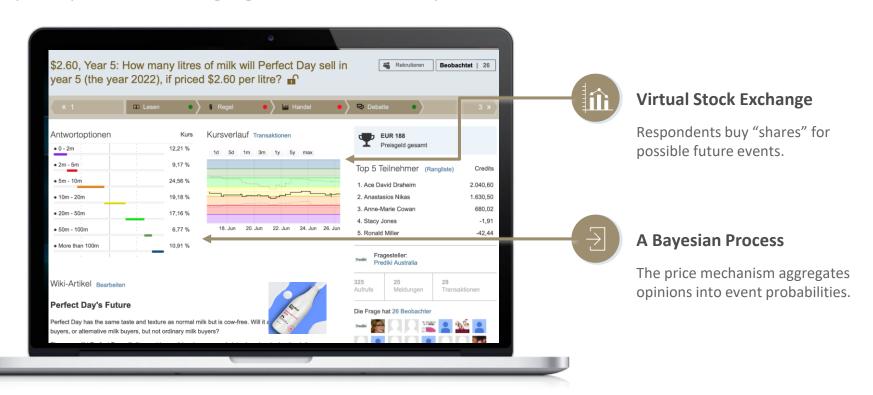
Step 2


Step 3

Step 4

Prediction Trading

Participants buy and sell various predictions (like shares)



Comments

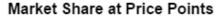
Comments from traders can be voted and also influence trading

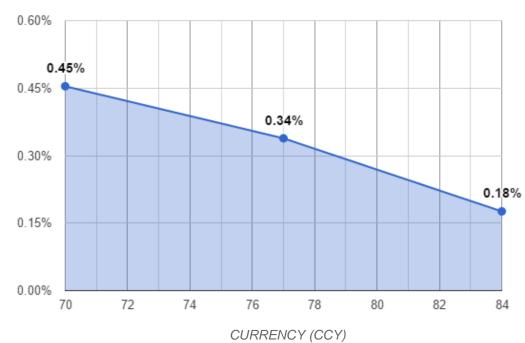
Strictly Online

In participants' native language, culture neutral, asynchronous 24 x 7, real-time

Meaningful Forecasts for Clients

KPI median and interquartiles for scenario planning





Predicted Market Share at 3 Price Points

Stylised price elasticity reveals price behaviour for further economic calculus

Market share

Optimal price point

Only with elasticity data we can calculate a strategic price:

- Maximise market share
- Maximise profit (marginal cost analysis)

Plus: Authentic Reasons to Double Down or Fix Problems

Decoding the thought process of participants' collective intelligence (Wisdom of Crowds)

Conjoint Analyse

Beispiel: Hotelbuchung Produktdetailseite (Quelle: Eibl S.)

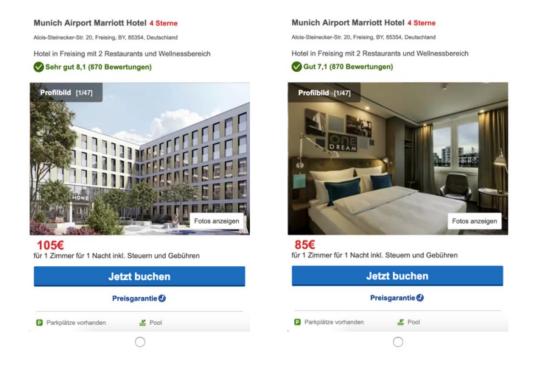
Wichtigkeit von Einflusskategorien bei der Auswahl von Hotelbuchungsseiten von Hotels in Flughafennähe

Design:

- n=180
- Symmetrisches Model 3x3
- 9 Profile
- 25 Vergleiche

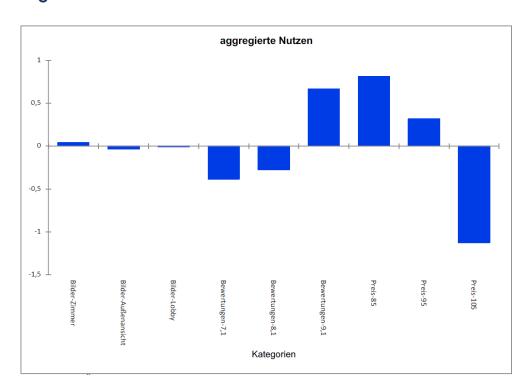
Studiendesign

	Bilder	Bewertung	Preis
Ausprägung1	Zimmer	7,1	85
Ausprägung2	Außenansicht	8,1	95
Ausprägung3	Lobby	9,1	105


ro	

1 101110			
BEOBACHTUNGEN	BILDER	BEWERTUNGEN	PREIS
PROFIL 1	Zimmer	7,1	85
PROFIL 2	Zimmer	8,1	95
PROFIL 3	Zimmer	9,1	105
PROFIL 4	Außenansicht	7,1	95
PROFIL 5	Außenansicht	8,1	105
PROFIL 6	Außenansicht	9,1	85
PROFIL 7	Lobby	7,1	105
PROFIL 8	Lobby	8,1	85
PROFIL 9	Lobby	9,1	95

FH WIENER NEUSTADT


Marketing & Sustainable Innovation

Beispiel Umsetzung Fragebogen

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Ergebnisse

Aggregierte Wichtigkeit	
Merkmal	Wichtigkeiten
Bilder	2,589
Bewertungen	34,245
Preis	63,166

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Adaptionen

- Adaptive Choice-Based Conjoint-Analyse (ACBC)
- Choice-Based Conjoint mit individuellen Attribut-Level-Optimierung (CIBL)
- Full-Profile Conjoint-Analyse (FP)
- Menu-Based Choice (MBC)
- Best-Worst Scaling (BWS)
- Dual Response Choice-Based Conjoint (DRC)
- Hybrid Choice-Based Conjoint (H-CBC)
- Rank-Ordered Choice-Based Conjoint (RBC)
- Attribute Level Screening (ALS)
- Hybrid Conjoint (HC)
- Latent-Class Choice-Based Conjoint (LC-CBC)
- Conjoint-Adaptive Conjoint-Analyse (CAC)
- Hierarchical Bayes Choice-Based Conjoint (HB-CBC)

Adaptionen

Adaptive Choice-Based Conjoint-Analyse (ACBC):

Die ACBC-Methode passt sich an das Wissen und die Präferenzen des Befragten an, indem sie in jeder Runde nur einige der Merkmale präsentiert und weitere Informationen über diese Merkmale sammelt, bevor sie eine endgültige Wahl ermöglicht. Dadurch wird ein realistischeres Bild des Entscheidungsprozesses des Kunden vermittelt.

Choice-Based Conjoint mit individuellen Attribut-Level-Optimierung (CIBL):

Die CIBL-Methode erlaubt die Modellierung von individuellen Kundenpräferenzen auf Attribut-Ebene und ermöglicht es Unternehmen, ihre Kunden besser zu verstehen und zielgerichtete Marketingstrategien zu entwickeln.

Adaptionen

Full-Profile Conjoint-Analyse (FP):

Die FP-Methode präsentiert den Befragten ein vollständiges Profil mit allen Produktmerkmalen und ermöglicht es ihnen, jedes Merkmal individuell zu bewerten. Diese Methode eignet sich gut für die Bewertung komplexer Produkte mit vielen Merkmalen.

Menu-Based Choice (MBC):

Die MBC-Methode präsentiert dem Befragten eine begrenzte Anzahl von Optionen und ermöglicht es ihm, aus einer Auswahl von Produkten mit verschiedenen Merkmalen zu wählen. Diese Methode eignet sich gut für die Messung der Kundenpräferenzen in schnellen Entscheidungsprozessen, wie zum Beispiel im Einzelhandel.

Adaptionen

Best-Worst Scaling (BWS):

Die BWS-Methode ermöglicht es dem Befragten, aus einer Reihe von Merkmalen das beste und das schlechteste Merkmal auszuwählen. Dadurch können Unternehmen schnell und einfach die wichtigsten Merkmale eines Produkts identifizieren und ihre Produktentwicklung und Marketingstrategien entsprechend ausrichten.

Dual Response Choice-Based Conjoint (DRC):

Die DRC-Methode ermöglicht es dem Befragten, eine Präferenz auf einer skalaren Bewertung (z.B. 0-10) sowie eine Wahl zwischen den Produktalternativen zu geben. Dies ermöglicht eine genauere Modellierung der Kundenpräferenzen.

Adaptionen

Hybrid Choice-Based Conjoint (H-CBC):

Die H-CBC-Methode kombiniert die CBC-Analyse mit anderen Methoden wie der Max-Diff-Analyse oder der Bewertungsskala. Dadurch können Unternehmen eine höhere Genauigkeit bei der Messung der Kundenpräferenzen erreichen.

Rank-Ordered Choice-Based Conjoint (RBC):

Die RBC-Methode verwendet einen Rangierungsansatz, bei dem der Befragte aufgefordert wird, die Alternativen in einer bestimmten Reihenfolge zu rangieren. Dies ermöglicht eine bessere Modellierung von komplexen Präferenzstrukturen.

Adaptionen

Attribute Level Screening (ALS):

Die ALS-Methode verwendet eine vorgeschaltete Bewertungsskala, um die wichtigsten Attribute zu identifizieren, die die Kaufentscheidung beeinflussen. Diese Methode kann dazu beitragen, die Anzahl der Attribute zu reduzieren und die Effizienz der CBC-Analyse zu erhöhen.

Hybrid Conjoint (HC):

Die HC-Methode kombiniert die CBC-Analyse mit anderen Methoden wie der Conjoint-Analyse mit direkten Ratings oder der Brand-Price-Tradeoff-Analyse. Diese Methode ermöglicht eine höhere Genauigkeit bei der Messung der Kundenpräferenzen und kann dabei helfen, bestimmte Produktmerkmale oder -attribute zu priorisieren.

Adaptionen

Latent-Class Choice-Based Conjoint (LC-CBC):

Die LC-CBC-Methode identifiziert verschiedene Kundensegmente auf der Grundlage ihrer Präferenzen und ermittelt, welche Merkmale oder Attribute für jedes Segment am wichtigsten sind. Diese Methode kann dazu beitragen, zielgerichtete Marketingstrategien zu entwickeln und die Effektivität von Kampagnen zu maximieren.

Conjoint-Adaptive Conjoint-Analyse (CAC):

Die CAC-Methode kombiniert die CBC-Analyse mit einer adaptiven Methode, bei der die Merkmale schrittweise präsentiert werden und der Befragte jedes Mal ein Feedback gibt. Dadurch wird eine genauere Modellierung der Kundenpräferenzen ermöglicht und eine höhere Genauigkeit bei der Vorhersage von Kaufentscheidungen erreicht.

Adaptionen

Hierarchical Bayes Choice-Based Conjoint (HB-CBC):

Die HB-CBC-Methode verwendet eine Bayesianische Statistik zur Schätzung der Präferenzmodelle. Dadurch wird eine höhere Genauigkeit bei der Vorhersage von Kaufentscheidungen erreicht und die Effektivität von Marketingstrategien maximiert.

Kritische Betrachtung

Vorteile:

- Realitätsnahe Bewertung (Einblicke in die tatsächliche Entscheidungsfindung der Kund*innen)
- Berücksichtigung von Wechselwirkungen (Wechselwirkungen zwischen den verschiedenen Attributen)
- Praktische Anwendbarkeit (leichte Durchführung)
- Implizite Ergebnisse (Bauchentscheidungen werden messbar)

Nachteile:

- Eingeschränkte Informationsmenge (begrenzte Anzahl von Alternativen)
- Mangelnde Flexibilität (klassische CBC-Analysen sind relativ starr)
- Abhängigkeit von der Stichprobe (oft mangelnde Repräsentativität)
- Alternativen: Verlust des impliziten Charakters

Ursprüngliche Funktionsweise

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Design

	Block 1 Block 2		Block 3	Block 4	Block5	
Task Description	Initial target-concept discrimination	Associated attribute discrimination	Initial combined task	Reversed target-concept discrimination	Reversed combined task	
Example Trial	BLACK WHITE SHAVONN pleasant unpleasant		BLACK WHITE TAMEKA pleasant unpleasant	WHITE BLACK MEREDITH	WHITE BLACK TAMEKA pleasant unpleasant	
			Dif	ference = IAT ef	fect	

Anwendung Market Research

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Klassische Anwendungen

- Markenimage: Welche Eigenschaften und Emotionen werden mit einer Marke verbunden?
- Kommunikation: Wie kommen die Botschaften bei den Verbraucher*innen an?
- Produktmerkmale: Welche Merkmale werden als besonders wichtig oder notwendig erachtet?
- Verpackungsdesign: Welche Emotionen weckt eine Verpackung und wie gut stimmt sie mit dem Markenimage überein?
- Wettbewerberlandschaft: Welche Assoziationen weckt eine Marke im Vergleich zu ihren Wettbewerbern?

Anwendung Pricing

Projekt der Uni Gent (es liegen noch keine größeren Veröffentlichungen vor)

€ 0,99

Teuer

Billig

Anwendung Pricing

Projekt der Uni Gent (es liegen noch keine größeren Veröffentlichungen vor)

€ 1,99

Teuer

Billig

Anwendung Pricing

Projekt der Uni Gent (es liegen noch keine größeren Veröffentlichungen vor)

€ 1,09

Teuer

Billig

Implicit-association test

Kritische Betrachtung

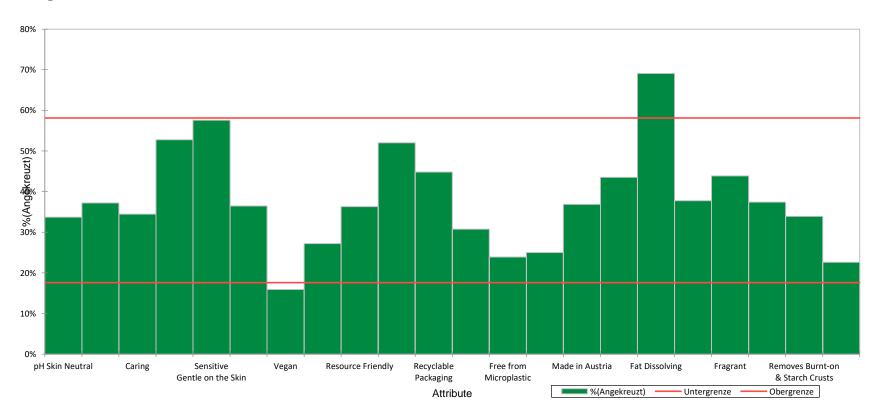
Vorteile:

- Hohe Validität
- Implizite Ergebnisse (Bauchentscheidungen werden messbar)

Nachteile:

- Aufwendige Erhebung
- Keine Erfahrungswerte
- Vorgegebene Preisspannen

Projekthintergrund

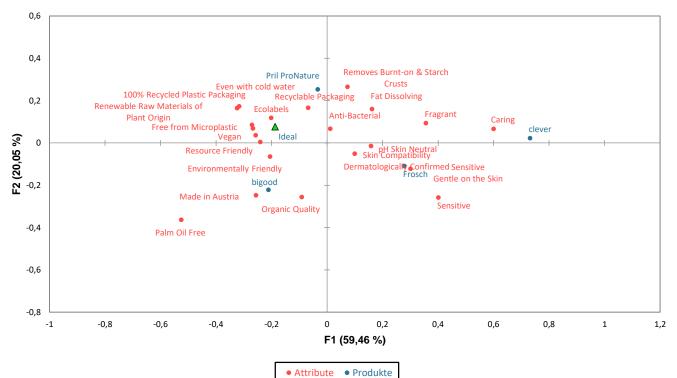

Ermittlung relevanter Attribute für Bio-Spülmittel und deren Auswirkung auf die Preissensitivität

Design

- N=108
- 4 Bio-Spülmittelmarken + Ideal
- 21 Attribute aus den Überkategorien Gesundheit, Nachhaltigkeit und Produktversprechen
 - pH Skin Neutral Skin Compatibility Dermatologically Confirmed Caring Sensitive "SensitiveGentle on the Skin,, Organic Quality Vegan Palm Oil Free Resource Friendly Environmentally Friendly Recyclable Packaging 100% Recycled Plastic Packaging
 Free from Microplastic Renewable Raw Materials of Plant Origin Made in Austria Ecolabels Fat Dissolving Foaming Fragrant
 Anti-Bacterial Removes Burnt-on & Starch Crusts Even with cold water
- Für jedes Produkt wurde eine Price Sensitivity Meter Analyse durchgeführt und mit den Preisen für billig und teuer eine Penalty Lift Up Analyse durchgeführt

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

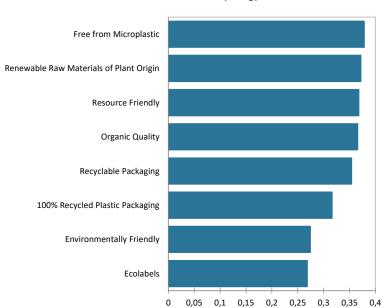
Ergebnisse

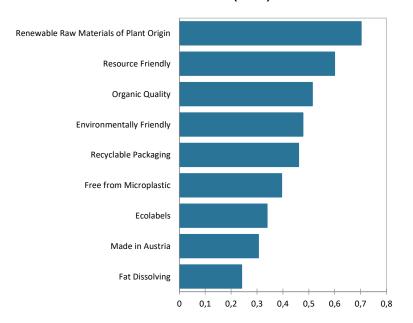


FH WIENER NEUSTADT CAMPUS WIESELBURG

Marketing & Sustainable Innovation

Ergebnisse


Symmetrisches Diagramm (Achsen F1 und F2: 79,51 %)



Ergebnisse

Effekt am Preis (billig)

Effekt am Preis (teuer)

Ergebnisse

Zusammenfassung (billig):

Zusammenfassung (teuer):

Muss-Haben	Interessant	Hat keinen Einfluss	Indifferent	Muss-nicht- haben	Muss-Haben	Interessant	Hat keinen Einfluss	Indifferent	Muss-nicht-haben
Organic Quality		pH Skin Neutral	Caring		Organic Quality		pH Skin Neutral	Caring	
		Skin							
		Compatibility					Skin Compatibility		
Resource		Dermatologicall					Dermatologically		
Friendly		y Confirmed	Sensitive		Resource Friendly		Confirmed	Sensitive	
·		Sensitive							
Environmentall		Gentle on the			Environmentally		Sensitive		
y Friendly		Skin	Vegan		Friendly		Gentle on the Skin	Vegan	
Recyclable			J		Recyclable				
Packaging		Palm Oil Free	Fragrant		Packaging		Palm Oil Free	Fragrant	
100% Recycled									
Plastic			Even with cold		Free from		100% Recycled	Even with cold	
Packaging		Made in Austria	water		Microplastic		Plastic Packaging	water	
Free from					Renewable Raw				
Microplastic		Fat Dissolving			Materials of Plant				
		J			Origin		Anti-Bacterial		
Renewable Raw					Og		7 5		
Materials of							Removes Burnt-on		
Plant Origin		Anti-Bacterial			Made in Austria		& Starch Crusts		
		Removes			Ecolabels				
		Burnt-on &							
Ecolabels		Starch Crusts			Fat Dissolving				

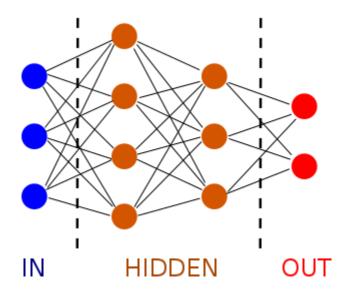
Kritische Betrachtung

Vorteile:

- Berücksichtigung von verschiedenen Attributen
- Berücksichtigung vieler Attribute
- Berücksichtigung unterschiedlicher Preisniveaus
- Statistische Validierung

Nachteile:

- Komplexe Berechnung
- Aufwendige Befragung
- Konsument*innen haben kaum Wissen über Marktpreise
- Neue Methode (kaum Erfahrungswerte)



(künstliche) Neuronale Netzwerke

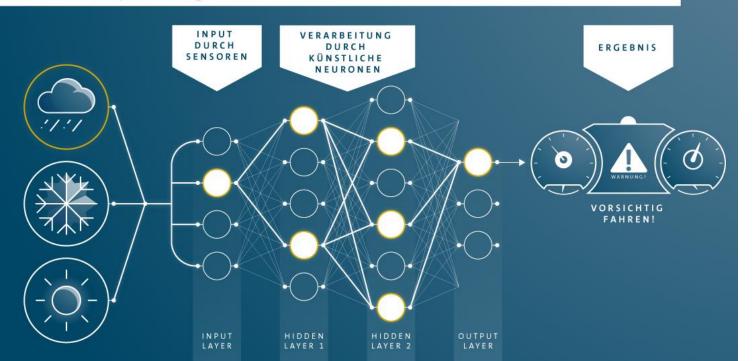
Prinzip

- Korrelationsstudie
- Zumeist nicht-lineare Zusammenhänge
- Künstliche Neuronen
- Maschine Learning (ähnlich Turningmaschine)
- Trainingsdatensätze
- Prognosen / Klassifikationen

(künstliche) Neuronale Netzwerke

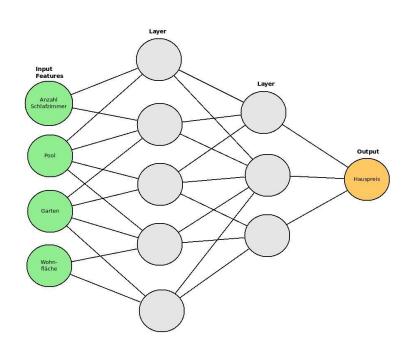
FH WIENER NEUSTADT CAMPUS WIESELBURG

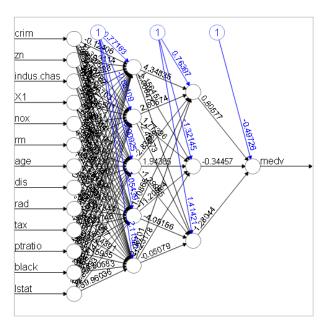
Lernmethoden


- Entwicklung neuer Verbindungen
- Löschen existierender Verbindungen
- Ändern der Gewichtung (zwischen den Neuronen)
- Anpassen der Schwellenwerte der Neuronen, sofern diese Schwellenwerte besitzen
- Hinzufügen oder Löschen von Neuronen
- Modifikation von Aktivierungs-, Propagierungs- oder Ausgabefunktion

Prognose Funktion (Beispiel VW)

SO FUNKTIONIEREN KÜNSTLICHE NEURONALE NETZE


Vereinfachtes Beispiel: Wie glatt ist die Straße?



Schema für Pricing

FH WIENER NEUSTADT CAMPUS WIESELBURG Marketing & Sustainable Innovation

Prognose Funktion

Rohschema Neuronales Netzwerk nach Training 67

(künstliche) Neuronale Netzwerke

Kritische Betrachtung

Vorteile:

- Anpassungsfähigkeit: Neuronale Netzwerke können auf eine Vielzahl von Aufgaben angepasst werden, indem sie ihre Parameter trainieren. Sie können auch komplexe Muster und Zusammenhänge in den Daten erkennen.
- Robustheit: Neuronale Netzwerke sind in der Regel robust gegenüber fehlerhaften oder unvollständigen Daten und können auch bei Störungen oder Verzerrungen gute Ergebnisse liefern.
- Skalierbarkeit: Neuronale Netzwerke können in der Regel einfach erweitert werden, um größere Mengen an Daten oder komplexere Probleme zu verarbeiten.
- Automatisierung: Neuronale Netzwerke können automatisch Entscheidungen treffen und sind daher besonders nützlich in Situationen, in denen schnelle Entscheidungen erforderlich sind.

Nachteile:

- Komplexität: Die Funktionsweise von neuronalen Netzwerken ist oft schwer zu verstehen und zu interpretieren. Es ist auch schwierig, die Gründe für bestimmte Entscheidungen zu verstehen oder zu erklären.
- Trainingsdaten: Neuronale Netzwerke benötigen in der Regel eine große Menge an Trainingsdaten, um effektiv zu arbeiten.
 Wenn die Daten fehlerhaft oder unvollständig sind, können sie auch die Leistung des Netzwerks beeinträchtigen.
- Overfitting: Neuronale Netzwerke können sich zu stark an die Trainingsdaten anpassen und dadurch schlechte Vorhersagen auf neuen Daten treffen.
- Berechnungsaufwand: Neuronale Netzwerke können aufgrund ihrer Komplexität und Größe sehr rechenaufwendig sein, was zu hohen Kosten für die Infrastruktur und den Energieverbrauch führen kann.

Für Fragen stehe ich gerne zur Verfügung

Robert Fina, BA MA

Wissenschaftlicher Mitarbeiter

Fachbereich Consumer Science

Research Center of Sensory Science and Consumer Behavior

Fachhochschule Wiener Neustadt GmbH – Campus Wieselburg

Marketing & Sustainable Innovation

Zeiselgraben 4 I A-3250 Wieselburg

+43 (0) 74 16 | 53 000 - 720

Perspektiven durch Praxis - Praxisnahe Ausbildung in Österreich:

Wiener Neustadt: Campus 1 I City Campus

Wieselburg: Campus Wieselburg I Campus Francisco Josephinum

Tulln: Biotech Campus

Wien: Campus Rudolfinerhaus